
;-

NATIONAL ADVISORY COMMITTEE ‘~!j
==

ROLLING

FOR AERONAUTICS

TECHNICAL NOTE 3067

EFFECTIVENESS

RECTANGULAR WINGS

AND AILERON RJ3VERSAL OF

AT SUPERSONIC SPEEDS

By John M. Hedgepeth and Robert J.Ken

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

April 1954

.. . . ... .. .. .- ..., .... ___ ------ ------ ... . .... .. . . . ..— .— -



Ic “

.

L

NATIONAL ADVISORY COMMITTEE

I Ld U . .AriY M-d, NM

Ilnulllll!l[lunlll
FOR AERONAUTICS fJUbb2211

TIKMIJICALNO’I!E3067

ROIU31G EFFECTIVENESS AND AILERON REVERSAL OF

RXTANGULAR WIXGS AT SUPERSONIC SPEEDS

By John M. Hedgepeth and Robert J. Ken

IJnearized Enrpersaniclifting-surface theory is used in conjunction
with structural influence coefficients to formulate a method for ana-
lyzing the aeroelmtic behavior in roll at supersonic speeds of a rec-
tangular wing mounted on a cylindrical body. Rolling effactiveness and
aileron-reversal speed are computed by using a numerical solution which
incorporates matrices.

Results obtained for an example configuration by using this methcxi
are compared with the results obtained by using simplified methods of
analysis. For the particular configuration considered, the variation of
rolling effectiveness with Mach number is found for two constant-altitude
flights.

INTRODUCTION

b the past, most aeroelastic’calculations have been based on the
use of beam theory for the structural analysis and strip theory for the
aerodynamic analysis. The application of these simplified theories
avoids complications which result from using more refined theories; in
addition, the simplified theories are quite adequate, in most cases,
when applied to wings of high aspect ratio. When applied to wings of
low aspect ratio, however, these simple theories may become inadequate;
if so, more refined structural and aerodynamic analyses are necesssry.

The purpose of this paper is to describe a method for predicting
aeroel.asticeffects on the steady-state roll of rectangular wings at
supersonic speeds in those cases for which bean and strip theory are
inadequate but for which the aerodynamic effects of chordwise deforma-
tion may be neglected. Zn this method the structural distortions caused
by arbitrary loads are expressed in terms of structural influence Zunc-
tions. The aerodynamic loads caused by arbitrary angle-of-attack distri-
butions are determined by superposing basic aerodynamic loadings resulting
from unit-step angle-of-attack distributions, which loadings sre obtained

,
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2 NACA TN 3067

herein on the basis of linearized aerodynamic theory. By means of this
superposition procedure, first outhed by Rick and Chubb in refer-
ence 1, the application of three-dimensional lifting-surface theory is
considerably simplified.

The aircraft configuration considered herein consists of two flex-
ible rectsmgular wings with trailing-edge ailerons of constant chord,
diametrically mounted on am infinitely long, rigid, cylindrical fuselage.

The analysis of the aeroelastic rolling behavior is separated into
various parts. The analysis of the structural deformations is described,
the aerodynamic loads are then found, and the two parts are combined.
A numerical solution of the resulting equations is presented in mtrix
form. Tables of aerodynamic matrix elements usable for any rectanguhr
plan form are included. A particular exsmple is analyzed and the results
are compared with those obtained by simplified methmis. T5e structural
analysis of the example configuration is included in appendix A and the
details
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of the aerodynamic analysis are rele~ted to appendix B.

SYMBoix

local flexural stiffness, E@/12(1 - pz)

Young’s mcdulus of elasticity

shear mcdulus of elastici~, E/2(1+ V)

structural twist influence function which results from a
unit concentrated load at the wing midchord

structural twist imfluence function which results from a
unit concentrated torque

aerodynamic load per unit span, positive upward

free-stream Mach number

aerodynamic moment, per unit span, about the midchord,
positive in the positive twist direction

static pressure at altitude

standard static pressure at sea level

aerodynamic moment, per unit span, about the elastic axis,
positive in the positive twist direction

—— .—..
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free-stream veloci~

ratio between fusehge

total wing span, 2(aZ

single aileron span

wing chord

aileron chord

3

radius and exposed wing semispan

+ z)

distance measured forward from the midchord to the ekstic
axis, expressed as fraction of chord

exposed wing semispan

mcdified aspect-ratio parameter, pz/c

rolling

tangent

-C

s31gularveloci~ (see fig. 1)

of the wing-tip helix angle

pressure

thickness of wing cross section

coordinate system (see fig. 1)

cotsmgent of the Mach angle, c1

section

section

section

aileron

lift coefficient,

moment coefficient

moment coefficient

L(y)

&

M(y)
about the midchord, —

qc2/p

Q(Y)about the elastic axis, —
W2/fi

deflection (see fig. 1)

angle of twist of wing (see fig. 1)

structural parameter, : ~G)
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f3ibscripts:

F

R
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r
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rev

P
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1,11,...VI

1

Poisson’s ratio

local angle of attack of wing

rollinn effectiveness, (Pb/2V)F/(Pb/2@R

veloci~ potential

nondimensionalized velocity potential

NACA Im3067

fletible wing

rigid wing

airloads due to aileron deflection

airloads due to roll

airloads due to structural deformation

aileron reversal

aerodynamic coefficients due to unit pb/2V

aerodynamic coefficients due to a unit rate of roll about
the x-axis

aerodynamic coefficients due to a unit angle of attack of
the entire wing

aerodynamic coefficients due to a unit aileron deflection

indicial aerodynamic coefficients due to a unit-step angle-
of-attack distribution

regions on surface of wing

nondimensional quantities used in appendix B

.

,,

.

Superscript:

f aerodynamic coefficients due to a unit-step angle-of-attack
distribution on one wing only

.

.
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ANALYSIS

structural Deformations

In this report the treatment of the structural deformations is
based on the assumption that there is no chordwise bending of the wing.
The effect of the stictural distortion on the aerodynamic loads is
then determined entirely by the angle of twist 9(y), the contribution
of the spanwise bending being negU_gible. (See fig. 1.) Consequently,
only the determination of 9(y) will be included in this smalysis.

If the section lift L(y) and the section moment about the mid-
chord M(y) are known, the angle of twist can be obtained from

J
x

J’
z

e(y) = GL(Y,q) L(TI)dq+ GM(Y,7) M(?) d~ (1)
o 0

~ this equation, GL(Y,7) ~ GM(y)O) we ~l~ce f~ctio~w~~

define the twist at y caused by the application of a unit concentrated
load at the midchord and a unit concentrated torque, respectively, at
the station q. For many structures these influence functions may be
obtained analytically as is done in appendix A for a uniform flat-plate
wing; other structures may be handled analytically by methods such as
those described in references 2, 3, and 4, for instance. For some
structures, it may be more convenient or even necessary to resort to
the use of experiment@ influence coefficients. The analysis proceeds
hereinafter on the assumption that the influence functions are known.

In general, the two influence functions are needed in order to
specify completely the twist of the wing. For many rectangukr wings,
however, sufficient accuracy canbe obtained by expressing the twist
solely in terms of the moment about some “elastic axis.” This elastic
axis is herein defined as a line along which loads can be placed without
producing significant twist anywhere.

IY an elastic axis does exist, it is no longer necessary to how
the influence function associated with load; only ~(y,q) need be

determined. The twist, in this case, is given by

I
z

e(y) = ~(Y,7) Q(II) d?
o

(2)

_— --— .—— — ——
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In this equation, Q(Y) is the section
axis and csm be expressed in terms of L(y)
simple moment-transfer relation

NACA TM 3067

.
torque about the elastic
and M(y) by means of the

.

Q(Y) = M(y) - e(y) c L(y) (3)

where e(y) is the distance measured forward from the midchord to the
elastic axis, expressed as a fraction of the chord.

Aerodynamic IOads

The section lift L(y) and moment M(y) may be expressed in coef-
ficient form as

L(y) = + pcl(y)1

For convenience, the products of ~ = 4Z1
considered herein rather than the coefficients

.
and the coefficients are
themselves.

It is assumed that the aircraft is undergoing a steady roll about
the axis of the body and that this axis is in line with the direction
of flight. Consequently, the resulting loads are due solely to struc-
tural twist of the wing, the rolJ_ingvelocity itself, and the deflection
of the ailerons. Since linear aermlynamic theory is to be used, the
coefficients resulting from this steady rolling maneuver can be expressed
as

(5)

where s, r, and a refer, respectively, to structural deformation}
roll, and aileron deflection.

@ the determination of the coefficients on the right-hand side of
equations (5) the wing and bdy nmst be treated as a unit. ~ view of
the fact that in this problem the pressures resulting from the presence
of the body are important only in the neighborhood of the wing root and
therefore contribute only slightly to the structural distortions and

.

.
.
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rolling moment, a rather simple idealization is made regarding the
body; that is, the body is replaced by a rigid plate joining the two
wing roots together. me width of this plate is the same as the body
diameter. (See fig. 2(a).) While it is not srgued that this ideali-
zation is the most nearly correct one, the resulting aeroelastic model
does have the advantage of simplicity and allows aerodynamic interaction
between the two wings. The presence of the cylindrical body is further
taken into account by neglecting the effects upon the rolling moment of
the pressures acting on the rigid plate, since the pressures acting on
the actual cylindrical body would produce no rolling moment.

Although the details of the calculations of the aerodynamic loads
have been relegated to appendix B, a short discussion of the loads due
to each of the three causes - structural deformation, roll, and aileron
deflection - is included in the subsequent portions of this section.

loads due to structural deformation.- As a consequence of the pre-
viously assumed Iineari@ of chordwise deformation, the local angle of
attack of the wing is completely defined by the twist of the wing. Since
the twist is not defined explicitly, the deformations being dependent on
loads which are, in turn, dependent on the twist itself, it is necesssry
to be able to perform the rather difficult task of calculating the aero-
dynamic loads caused by an arbitrary angle-of-attack distribution. This
task is considerably simplified for the rolling problemby superposing
loads caused by an antisymnetrical unit-step angle-of-attack distribution
obtained by imposing a positive unit angle of attack outboard of any
spanwise station q on the right wing and a negative unit angle of
attack over the correspondfig portion of the left wing as shown in fig-
ure 2(b). These basic load distributions, which have the nature of aero-
dynamic influence functions, are hereinafter called “indicial” loads for
the sake of brevity. Superposition of the indicial section coefficients
of lift and twisttigmomentj designated 13Cze(Yjv) and P’&(YJV)~

respectively, which result from such basic angle-of-attack distributions,

yields the section coefficients ~CZ(Y~8 and ~cm(y~s duetostic-

tural deformation. The required superposition integrals are given by

where the tw’istat the root is assumed to be zero.
.

.

(6)

—— ——



8 NACA TN 3067

The indicial section coefficients are dependent not only on the
spanwise coordinate y and the position of the step q but also on
two additional parameters. These parameters are the modified aspect-
ratio parameter j3Z/c,which usually appears in theoretical supersonic
aerodynamic calculations, and the nondimensional body radius a. The
dependenq’on the bcdy radius is undesirable since it restricts the
application of these indicial section coefficients to a particular value
of a. Fortunately the dependency can be eliminated by making use of
the fact that the loads due to the antisymmetrical unit-step angle-of-
attack distribution can be separated into two parts: the first is the
loads due to a unit-step angle of attack on the right wing only (see
fig. 2(c)); the second is the loads due to a negative unit-step angle
of attack on the left wing only. It can be seen that the second part
is merely the negative mirror image of the first and, consequently,
only the first case need be considered in detail. The total indicial
section coefficients can be written in terms of these partial indicial
section coefficients, designated ~cze’ and f3~’, as follows:

The first term on the right-hand side in equations (7) gives the contri-
bution of the right-hand step angle of attack; the second term gives the
contribution of the negative left-hand step.

The advantage of the foregoing separation is that f3czo’ and ~~e’

are independent of the body radius and are functions of only the modi-
fied aspect-ratio parameter, provided that this parameter is greater

-1
than L that is, when the l&ch number is great enough so that

1+ 2a’
there is no point on either wing that is influencedby both wing tips

simultaneously. Thus, if the restriction ~>~ is imposed, a

single parameter remains - PZ/c itself - and it is feasible to compute
tables applicable for any bdy radius. Numerical values of j3czQ’

‘< 1 in steps of 0.1 are pre-and $C
d

c<~<l and 0<7.for -—
Bz-z-

sented in table I for several values of ~Z/c. These numerical values
were obtained from expressions derived in appendix B.

.

.
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Loads due to roll.- ‘Ihesection loading coefficients resulting
ro12 can be written in the form

(Pc,)r=

(%)r =

The rolling derivatives Pczp

9

(8)
pb

$% m J

again the derivatives are dependent on both Pz/c and a. Tnspec-
of the resulting expressions (eqs. (B13) and (B14)), however,

reveals that the dependence on a is quite simple; the expressions
for ~ctp and 13~ can eachbe separated into two parts - one with

the coefficient ~
1

the other with — - both of which parts
l+a’ l+a

are independent of a. It is possible to show that in each case the
first part is merely the derivative which results from a unit angle of
attack of the entire wing and the second part is the rolling derivative
which would result if the wing were rolling about the x-axis. There-
fore, these expressions become

(9)

131

Sary to

order for this simplification to be correct, it is again neces-

impose the restriction ~> ~~2a.

The quantities

hted for values of

table II for several

m~a, ~~> !3Czp, - B% have been calcu-
0 0

O= $~ 1 in steps of 0.1 and are presented in

values of ~Z/c.

— -.— ——.——— — ——_ —— —..———.
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Loadsdue to aileron deflection.- The section coefficients of lift
twisting moment,

(PC,) = J3czbb
a

1
(lo)

(%n)a= %nJ J

respectively, are found for constsnt-chord trailing-edge ailerons of
arbitrary length. All gaps between the wing and aileron are considered
to be sealed. The calculation of the aileron derivatives Bczb and

fl~ is very similar to that of the indicial structural loads and is

included in appendix B. For most reasonable aileron configurations, if
the aircraft is flying at supersonic speeds sufficiently high to satis~

(
the Mach number limitation previously imposed that is, p2 1~>—

)l+ 2a’
an aileron deflection on the left w2ng produces no loads on the right
wing. For this reason, only the case is considered wherein the loads
on one wing are independent of the aileron deflection on the other. In
this case, the limitation on the mmlified aspect-ratio parameter ~Z/c
for the analysis of ai~ron loadings in appendix B is that ~Z/c must

be greater thsn
cd c

ba”
Numerical values are given in table III

l+ 2a-T

for OS ~~ 1 in intervals of 0.1 for several values of ~Z/c; the

computations have been made for ha/Z = 1.0 W ca/c = 0.2.

Significance of Mach number limitations.- Although the restrictions
that have been placed upon the modified aspect-ratio parsmeter limit the
utility of the aerodynamic results contained herein, these restrictions,
in reality, are not serious. This fact is substantiatedby considering ‘
a typical configuration such as that used for the example contained in a
subsequent section. For this wing, which has an aspect ratio of 3.6,
the pertinent parameters are z/c = 1.5, a = 0.2, Cajc = 0.2, and

bajz = 1. The restriction imposed upon the expressions for the loads

due to structural deformation and roll, $>~
1+ 2a’

and that for the

pz cd c
loads caused by aileron deflection, ~>

ba’
become M> 1.1o8

l+2a-Y

and M> l.0~, respectively. Since the validity of linear aerodynamic
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theory is questionable near a Mach numiberof 1, these limitations are
of little consequence.

Aeroelastic Solution

Structural and rolling-moment equations.- In the solution of the
aeroelastic rolling problem, not only must structural equilibrium
(eq. (1)) be satisfied but also the equilibrium of moments about the
rolJing axis. If the loads in equation (1) are replaced by the loads
arising from the various causes as derived in the preceding section,
the equation specifying structural equilibrium becomes

G

Rolling-moment equilibrium is attainedby setting the total rolling
moment equal to zero. This condition can be written as

J
z

(az + q) L(q) dq = O
0

Again, the results of the preceding section canbe

Y

used to give

(12)

—.— —- . ..—— -——.—— .—
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Alternate structural equation.- Equations (II) and (12) completely
express the necesssry conditions for this aeroelastic problem. It is
to be noted that the quantities 5 and qc/13 are, in general, lnmwn,
the structural twist 6(y) is *own, and the aeroelastic rolling
rate pb/2V is the quanti~ that is desired. The simultaneous solu-
tion of these equations in closed form is, in actuality, extremely
difficult if not impossible to obtain. Some sort of numerical solution
is therefore inevitable. One me of numerical solution which utilizes

ia collocation technique in the solution of equations (U and (12), is
derived in a subsequent section.

The numerical methods with which the indicated integrations in
equations (11) and (12) are performed can be expected to be accurate
when applied to reasonably well-behaved functions. b addition to
numerical integration, however, numerical differentiation must be used
in order to express the rate of twist dO/dy, upon which the loads due
to structural deformation depend, in terms of the twist 0. As is well
known, the process of numerical differentiation is not as accurate as
that of numerical integration and therefore should be avoided if possible.
The numerical differentiation can be eliminated by differentiating equa-
tion (n) with respect to y, which operation yields

L

In this
and the
becomes

manner, equilibrium equation (I-1)is replaced by equation (13)
twist e no longer a~ars in the problem. The rate of twist
the unknown and can be used directly in the numerical solution.

The use of equations (12) and (13) is particularly desirable when

the functions %&@ ad a%(y’q)
ay &

, which are merely the rates of

.

.

.

.

.



NACA TN 3067 13

twist due to concentrated loads and torques, respectively, can be found
accurately. The example considered in a subsequent section is one for
whiEh it was possible to obtain these functions analytically. When
complicated structures are to be dealt with, however, recourse must
usually be made to experiment or to approximate theories in obtainin~
the structural properties. For these structures, probably only discrete
influence coefficients for twist can be found; the determination of the
rate-of-twist influence functions would be subject to at least the same
inherent inaccuracies as the numerical differentiation discussed pre-
viously. lh such cases, therefore, the use of equation (13) instead of
equation (I-1)would not be advantageous.

Aileron reversal.- H the rolling-moment equation (I-2)is solved
for 5, the result is substituted into equation (U) or equation (13),
and pb/2V is set equal to zero, the following equations result:

For equation (U),

-r‘%evc z
e(y) =—

P J0

—

dq -

x

(14)

— ————.-. ___ _ ———— - ————— ——-.——— - —- —.
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For equation (13),

-)

Either of these homogeneous
for aileron reversal, where

(15) -

.

integral equations expresses the condition
the dynamic pressure at reversal qrev

appears as an eigenvalue.

Rol1+ng effectiveness.- The effect of the elastici~ of the wing
on the rolling behavior msy %e determined by examining the ratio between
the rate of roll of the flexible wing and the rate of roll which would
occur if the wing were rigid. This ratio, the “rolling effectiveness,”
is designated as $, where

(@/2v)F

9= (pb/2@R

u this equation (pb/2V)~ is the rate Of ro~ dete~ed ~rectkf

from the aeroelastic equations. The quanti~ (pb/2V)R, the rate of roll
.
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0

for the rigid wing, is found by setting the twist per unit length equal
to zero in equation (12):

.

Jz(a2+y) @@) O

()pbXR =-5°

J

z
(al+y) 9cZp(Y) W

o

(16)

Simplifications for wings with an elastic axis.- If the wing is

constructed in such a manner that sm elastic axis does exist as previ-
ously described, the expression for structural equilibrium is given by

equation (2) tistead of equation (l). It is to be remeniberedthat, in
this case, the twists are dependent only on Q(y), the torque about the
elastic SXLS, and not on the load L(y). The aeroe~stic s~c&al-
equilibrium equation which results from using equation (2) instead of
equation (1) can be obtained by merely deleting the terms in equa-
tion (U) that involve ~(y,q) and replacing the section moment coef-

ficients about the midchord by the section moment coefficients about the
elastic axis. Thusj the derivatives B%ey B%, ~d ~~ sh~ be

replaced by ~cqe) ~Cqp, and $c%j respective, where

(17)

In these equations, as before, e is the distance measured forward from
the midchord to the elastic axis, expressed as a fraction of the chord.

The equations analogous to equations (13), (14), and (15) are
obtained in exactly the same manner.

even

NUMERICAL METEOD

Since an exact solution of the aeroelastic equations is not feasible,
for the simplest configuration, this section is devoted to the

.————— — .— .—. —. ..— —. — -—-——— ..-— — ..—
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.

presentation of a numerical method of solution. The method is based on
satisfying the equations at a number of discrete spanwise stations.
Matrix notation is used as an aid ti orgsmizing the numerical procedure. .

A step-by-step outllne of the procedure is included at the end of this
section in order to aid the reader.

The accuracy of the numerical method is directly dependent upon the
number of stations used. _ience has shown that for this particular
problem Illstations, defined by the end points of 10 equal spanwise
ti.tervals,are sufficient. The derivation that follows is therefore
based on 10 equal intervals, the extension to other nuuibersof intervals
being evident. Simpson’s rule is used to perform the integrations and
parabolic difference equivalents are used to replace any necessary
derivatives.

Matrix Operations

Two distinct -S of integration appear in the aeroelastic equa-
tion. The first is of the form

and the second is of the form

The integrands h these equations are evaluated at each of the spanwise
stations qo, Vl, qp, ● ● ● vi> ● ● ● 710% whereY for equal intervals of

width e, Vi = i~. h a similar manner this sulmcript notation is used

to denote evaluation of the integraads at each spanwise station. Thus,
f~ = f(l@ = f(i~)j gi = g(qi) = g(i~), ~d ~j = h(yi,qj) = h(i~,j~).

For 10 intervals, e = Z/10 and Simpson’s rule becomes, for ea@h of the
integrals, respectively,

J
z

(f(q) g(q) dq = ~f + hflgl + 2f2g2 +
o

30 0%

4f3g3 + . . . + 4fggg + floglo)
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and (for any single yi)

.

~zqY,dl) d,) m= *(h,o.o+J+h,,g. + ‘+,% +

khi3~+ . . . +4hi9~+hi,loglo)

M matiix form these integrals cam be written as, respectively,

J

2
f(~) g(~) dq =

o
HEM

and (for all yi)

The row matrix is given by

H =bf’f’f3 ““” ‘gf’d
and a typical.column matrix by

17

. . ..——.—. —— — —————— — . . —.—



18 NACA ‘IN3067

where the subscripts denote the position of each element. The square
matrix is given by

[

%0

%0

H%-J = %20

●

%1

h~

%

.

%2 ““” %,10

h~ ... hl,lo

%22 ““” %,10

. .*. .

%0,0 %0,1 %0,2 ““” %0,10

L

where the first subscript designates the row and the second subscript
designates the column in which an element appears. This subscript nota-
tion is used throughout this section. The inte~atingmatrix is given
by

[1s 2=—
30

[

1
4
2
4
2
4
2
4
2
4
1

.

.

.

(18)

AU derivatives which appear in the aeroelastic equation are of
first order; difference equivalents based on passing a parabola through
three adjacent points are used herein to approximate the derivatives.
For the points i = 1, 2, . . . 9 the standard difference equivalent
derived by finding the slope at the center of the three ordinates is
used:
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For the end points
the three ordinatm

h matrix fOI”M with

i =0 andi
must be used:

= 10, the slope at the exterior of

()dfGo=

()df

=~()=

-3fo + kfl - f2

f~-- 4f9 + 3flo

2E

E = 2/10, these expressions become

where the differentiating

The aeroelastic
using the results of

[1D =

E)i=E“]Ifil
matrix

4-1
.01
-101

-101
-101

-101
-101
-101

-101
-1 0
1-4

Aeroelastic Matrix Equation

(19)

equations may now be written in matrix form by
the foregoing numerical analysis of integrating

—. —-.__—
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and differentiating processes. Equations (~) and (1.2)become,
respectively,

‘il=f{[(%)mipc’d[ s][’ % +

C[(%)d[slbd[ s 1[ D : ‘k1+
%’{~QiJ[’]‘BCZP)J“[(%)i~“C%l;
&

{[ 1[
(%) ij

s +C

—

(%)ij
— 1

[

—

s

—

.

.

s ( %)B

}
L1 “

(20)

anti

f{~z+yd[s][%),][s][ D] ‘k +

%++,d[‘ ] (Pczp,jl+++YJ[‘]l,$%,j}=0
(21)



MACA TN 3067 21

H these equations are divided ~ough by 5 and the resulting
matrix equations are combined, the following partitioned matrix equa-
tion results:

—

%.

---

E

—

H’]-M
T
——_— ___ —

LM

Ci

-—-

F

are[11 is the unitwhere I’llatdx.The submatrices given by

1= s:1(%)ij s

s

s

s

s

+

(%)ij
: 1[ 1[1()‘he Sk 1

s

s

s Dc

-c.11(%)ij
r

=-

[ 1[(%)ij (%)P
J

( %)$C!
3

(%)ij
H[
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E=+Z+YJs ] (I%p),

F=
L 1~
al + yj s

1-

where

i,j, k=O,lj 2,...10

For a given configuration flying at a given speed and altitude,
all the quantities in equation (22) are known except the twist e at

I
‘b 5; solution of this matrix equa-each station and the rate of roll w

tion yields these quantities.

The rigid rate of roll, as fouud by expressing the integrals in
equation (16) in numerical form, is merew

(23) -

If the rate-of-twist influence coefficients are known, it is prefer-
able to employ equation (13) instead of equation (U). Ih this case, the
partitioned matrix equation analogous to equation (22) is

—

1

%

-——

:11-[~
I

;.—— ——— ——— .

q

———-

F

I

(24)

where the submatrices are given by
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1+
1[ )][aGM

c Flj
s

s

.

s (%)P
J

l--
.

s.s

L 1[-al+yjDd= s

scalars E and F remain the same as thoseand the expressions for the
given immediately after equation (22).

By applying the same numerical processes, the aileron-reversal equa-
tion (14) (or eq. (15)) can be put in titrix form.. Equation (14), in
which e is the variable, becomes

Ieil‘=[1+ Cwq ‘kl (25)
.

The submatrices are defined immediately after equation (22).

.

-.-—..—— — ...— — .—
-.— —–
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Similarly, equation (15), where de/dy is the variable, becomes

(26)

The submatrices are defined immediately after equation (24).

A solution to equation (25) (or eq. (26)) is easily found by using
matrix iteration. The process converges to give the lowest eigenval.ue
from which the dynamic pressure at aileron reversal may be obtained.

Reduced ~trix Equations

UP to this point, the numerical analysis haE been based on the use
of 11 spanwise stations, a nuuiberthat was deemed necessary in order to
obtain the desired accuracy because of the ill-behaved nature of some
of the aerodynamic loading functions. Tnmost cases, however, the twist
(or rate of twist) is well behaved and, therefore, requires fewer sta-
tions for adequate specification. Utilization of this fact allows a
considerable saving in the amount of work necessary to solve the matrix
equations because of the fewer degrees of freedom @volved.

If either the indst or the rate of twist is specified at the even-
numbered stations, an interpolation procedure can be used to determine
the values at all I_lstations. The particular &pe of interpolation
used herein is obtained by passing a fifth-degree polynomial through
the even-numbered stations and then evaluating this polynomial at the
odd-numbered stations. This interpolating procedure can be written in
matrix form as

or

“

ek =
[1
‘kz %

where k=0,1,2, . . . 10 and z = O, 2, 4, “. . . 10 and the inter-

.

.

.

polating matrix [1‘kl is given by

.
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.

[1% =

The

1 0 0 0 0 0-

o.2k6@4 1.230468-0.8203M 0.492187-0.175781,0.027344

0 1 0 0 0 0

-0.02@14 o.41o156 0.820312-0.2@t37 0.082031 -0.0KL718

o 0 1 0 0 0

0.011LTL8-0.097656 0.585938 0.585938-0.0976560.on718I (27)

o 0 0 1

-o.on718 0.082031-0.2~437 0.820312

0 0 0 0

o.02~44 -0.175781 0.492187-0.820312

0 0 0 0

0 0

0.41o156-0.027344

1 0

1.230468 0.246094

0 1

twist (or rate of twist) now needs to he
even-numbered stations, the quantities at the odd-numbered stations

known only at the

being obtained by interpolation. Therefore, only the even rows of the
influence-functionmatrices are necessary; these matrices become rec-
tangular with 11 columns and 6 rows. When these simplifications axe
used to write the matrix equations for equations (n) snd (12) and the
resulting equations are combined, the following partitioned matrix equa-
tion results:

1-
1

+[1] -[%:]%*
I
I——— ——— ——— ___ ..

I_

o@

.———
pb

I
.@

II
f%’

.--—-

F

(28)

— -—-— —— —— —-. —
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where the submatrices are given by

[1c (G&j

I%*=‘[(GL,~]

: s11’%),1[s1[DIFkl

:s] (Pczp),-c[(@=d[s](B%)J

“ =[(~)=d[ s] ‘$CZJ“[(%)@]

s:1 (%)P
J

.

D

1[ 1

“Z

Note that the subscripts j and k assume all.values, both even and
odd, and the subscripts m and Z assume only the even values.

.
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The analogous
of-twist influence

partitioned matrix equation to be used when the rate-
functions are known is

I
I

*[’ 1- [iilj~’

I
I
I-——— ——— ——— ——

where the submatiices are given by

l—

s

s

s

-—

()
‘1[1

we~k s

Fil[sli
I L

.-

‘kz

.-

i’cz+l[sl[Tkl

s

(29)

— ..—. —
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The scahrs E and F are given after equation (28). Here again the
subscripts j and k take on all values, whereas m and Z assume
only even values.

The aileron-reversal equations may also be expressed in this
reduced-order form. Thus, equation (14), in matrix form, is

(30)

The submatrices are defined after equation (28). Similarly, eqmtion (15)
becmnes

L

()deG, (3U

The submatrices in this case are given immediately after equation (29).
Again, standard matrix iteration ~rocedure may be-used to solve equa-
tion (30) or (31), the amount of work being approximately one-fourth as
much as is involved h the iteration of equation (25) or (26).

S@@ifications for Wings With an Elastic Axis

TWO operations are required to modify the aeroelastic matrix equa-
tions when an elastic axis exists. First, all terms involving the

mtrices MorH ‘ede’eted-‘Condy‘he‘ectim-mm

[11

$c~ , pcqp , and II‘c%inaccordsmce
$% are replaced by

with equation (17).

.

.
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Computational Procedure

As has been previously mentioned, the task of calculating the
rolling effectinness for the given configuration flying at a given
altitude and speed is straightforward; only the solution of a set of
simultaneous equations is necessary. IY a complete knowledge of the
aeroelastic behavior over large ranges of speed and altitude is desired,
however, the manner ti which the various parameters are involved should
be taken into account in determining the sequence of calculations. It
should be noted that the Mach number enters the problem in a complicated
manner, whereas the dependence on altitude is rather simple; that is,
the I@ch number affects the aerodynamic matrices and the altitude affects
only the dynamic pressure q. It is therefore obvious that the most
economical way to perform the computations is to calculate the variation
of rolling effectiveness with dynamSc pressure for several constant values
of Mach number. ~ addition, since the rolling effectiveness is of little
interest when the contiols are reversed, the range of dynamic pressures
should be restricted to vslues less than qrev. The dynamic pressure at

reversal should, therefore, be determined for each value of Mach number
before proceeding with the calculation of rolling effectiveness.

An outline of the steps required in the determination of the aero-
elastic effect on roll for a range of altitude and Mach number is
included herein. For simplicity, only one of the several numerical
approaches derived in this section - that is, the one wherein the twist
influence functioni3 ~ and ~ and the interpolation procedure are

utildzed - is illustrated; the others follow the same outline, differing
only in detail.

(1) Evaluate, either analytically or experimentally, the twist
influence functions ~(y,~) and ~(y,q) at stations y/1 = O, 0.2,

0.4, . . . 1.0 due to loads and torques applied at stations ~/z = O,
0.1, 0.2, . . . 1.0. l?romthese values, form the n-by-6 matrices

(2) For a given Mach number (one should be chosen which results in
a value of $Z/c which appears in the tables) determine the indicial
section lift and moment coefficients PCze ~d P%. These coeffi

cients, which are found by applying equation (7) to the values of ~cze’

and B%’ in table I, can then be used to form the square utrices

PCZ’)4‘dFil”
—— –.. — —— ———.—.—. —
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(6)

(7)

(8)

NACA TN 3067 “

(3) ~ a similar manner, form the columa matrices
()
$Clp ~ and

/(%)$3
, making use of equation (9) in conjunction with the values of.

%po - Pcza in table II.

(4) Determine the section loading coefficients due to a unit aileron
deflection. Use these coefficients to construct the column matrices

($c%)j
and

1( )P% j ●
(These coefficients are listed for one

aileron configuration in table III. Equations for the coefficients for
a rather general aileron configuration are included in appendix B.)

(5) CoWuti the matrices
~~z!’ Id H EUIdLD2*I and

the scalars E and F defined immediately after equation (28). The

integrating and differentiating matrices [’1“ H h ‘ese‘def-
initionsare given by equations (18) and (19); the interpolating matrix

[1 is given by equation (27)= the row matrix

o~k~he moment arms about the ro~ng axis
b2 + ‘d

is made up

.

Obtain qrev by iterating-thismatrix (see eq. (30)).

For each of several values of q between zero and ~ev, form

the matrix equation (28). Solution of this equation yields
( 1)
pb
2V F

for each value of q. Obtain the rolling effectiveness @ by dividing

(%’)F by (~1’)~ ((%),=$

(9) Repeatdqm (2) to (8) for several other values of Mach number.

SAMPLE APPLICATION

W this section, aileron effectiveness
for a specific aircrsft by the approach set
termed “lifting surface theory,” and by two

and reversal speed are found
forth in this paper, which is
simplified methds. Each half -

.
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of the exposed wing consists of a uniformly thick aluminum plate with
an aspect ratio l/c of 3/2 and a thickness ratio t/c of 0.02. !Che
full-span aileron is formed by bending the plate along the 0.8-chord
line; therefore ha/Z = 1.0 and ca/c = 0.2. The Wings are mounted

rigidly on the bdy, which has a radius of one-fifth the exposed wing
semispan; therefore a = 0.2. These ratios are sufficient to define
completely the configuration, since, as is seen later, the results are
independent of absolute dimensions.

Although the plate is considered to be bent in order to form the
aileron, the plate is assumed to behave structurally as if no bend had
been made. On the basis of this assumption the necessary structural
influence coefficients are
plified flat-plate theory.
does an elastic axis exist
midchord.

determined in appendix Aby means of
Tn this case, as couldbe expected,

but also this elastic axis coincides

a sim-
not only
with the

Calculationby Iifting-surface Theory

Since the influence functions are obtained analytically, the rate-
of-twist influence function rather than the twist influence function has
been determined in order that no numerical differentiation be necessary.
In addition, the wing structure being free of discontinuitiesj the inter-
polation procedure developed in the preceding section may be successfully
employed. Equations (29) and (31), mcdified as outlined in the preceding

Ip~ ad ‘rev’section, are therefore.usedto compute
2V

respectively.

Before proceeding with the solution of equations (29) and (31), the
dimensional character of the structural, aerodynamic, integrating, and
interpolating matrices involved in these equations should be considered.
The aerodynamic and interpolating matrices are clearly dimensionless.——

HThe integrating matrix S and the rolling-moment-arm matrix
k’+ ‘d

are proportimal to the exposed semispan 2. The influence-function
matrix for the example configuration,which is presented in table IV, is

I(#c
written as the prduct of the quantity 1 —

3
and a nondimensional

matrix.

The aforementioned independence of absolute dimensions can now be
demonstrated. Equations (29) and (31) canbe written in the form

—-.——— . ,—, ,:’
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I
I
I

I
I

I
I

.—— ——— ——— ——— —.— l—————.

and

I

I E
I
I

~

I —

I
dez

I

—5
d+

.-— —

(32)

(33)

where the nmltiplication of the various submatrices by the indicated
quantities yields nondimensional results. Inspection of equations (32)
and (33) shows that only ratios of the dimensions are involved, and that
the quantity

is an important nondimensional parameter for this particular configuration.

The step-by-step procedure previously outlined has been followed
for the example configuration and the results are included in figure 3.
Since the dynamic pressure in this case is essentially an altitude param-
eter, the results in figure 3 are shown plotted against the pressure ratio
ph/p@ where P. is the standard pressure at sea level, as obtained from

reference 5, and ph is the free-stream static pressure at altitude and

is related to q by the equation

in which y is the ratio of specific heats of air.
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.
Simplified Methods

Two simplified methcds of analysis have also been used to solve
for qrev @ @ for the example. They differ from the method pre-

viously described only in that the airloads are determined by simplified
means. h the first metbi, lifting-surface theory is mdified in a
manner similar to that used in reference 6, wherein it is assumed that
the chordwise center of pressure due to structural deformation and roll
coincides with the elastic axis of the wing. Th.lS, the total twisting

mqment about the elastic axis is equal to the twisting moment due to
only the aileron, and equation (15) becomes

(34)

The rolling-moment equation, equation (12), is unchanged. A solution
to the problem has been obtained by using matrices in a manner similar
to that employed previously. h this case, however, de/dy is given

explicitly by equation (~) and, therefore,
I

‘b b can be calculated
z

directly, the solution of a set of simultaneous equtions being
unnecessary.

h the second methal of analysis, the aerodynamic terms are derived
on the basis of two-dimensional (strip) theory. For the case wherein
the elastic sxis lies on the midchord, the center of pressure due to
structural defamation and-roll coincides with the elastic axis of the
wing and the only twisting moment about the elastic axis is that produced
by the aileron. Therefore, equation (34) expresses de/dy exactly, and
the rolling rate obtainedby solving equations (12) and (34) is exact.
Because of the simplicity of the strip theory, these calculations can be
performed analytically.

The results obtained by using these methods, termed, respectively,
“modified Lifting-surface theory” and “strip theory,” are also shown in
figure 3 for comparison
theory.

with the results obtained

RESULTS AND DISCUSSION

by using lifting-surface

Theresults shown in figure 3 indicate that the variation of rolling
effectiveness @ with the pressure ratio ph/pO is, for pT?aCtiCd. pUr-

poses, linear. This linearity suggests the possibili~ that, for configu-
rationsof the type considered, only the computation of pressure ratio at
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revers~ (@())rev would be required; the rolling effeatfveness for

s~~er values of ph/po could.then be obtained by linear interpolation.

Jn this way the computation time could be greatly reduced, the calcu-
ktfon of (ph/pO)rev being a relatively simple process. Some care

should be tsken, huwever, in making use of this linearity, since it
appears to depend on the proxhi~ of the elastic axis to the chordwise
center of pressure due to angle of attack. For wings wherein the elastic
axis is distant from this center of pressure, considerable curvature of
the ro?lllng-effectivenesscurves could result. At the other extreme,
the results in figure 3 obtained by using the two simplified methals are
exactly linear, since, in both cases, the elastic sxis and the center of
pressure are coincident.

An additional consequence of this Hnearity is that the accuracy
with which a particular method predicts (ptipO)rev is a direct measure

of its ability to predict rolJ.ingeffactiveness. A comparison of the
values of (ph/pO)rev obtained by the two simplified methods with those

obtained by the method presented in this paper is therefore shown in fig-
ure 4, wherein (p~’o)rev is plotted against Wch number. Although the

results show very little difference in W values of (p~po)rev as

obtained by the three methods at high values of M, considerable differ-
ence exists at low values of M. The results obtained by the use of the
modified Ef ting-surface theory are consistently unconservative; the
results obtained by the use of strip theory are consistently conserva-
tive. lbdified lifting-surface theory neglects the twisting moments
arising from the twist of the wing; only the torques caused by aileron
deflection are considered. Neglect of the twisting moments due to angle-
of-attack changes etidently reduces the resultant angle of twist and
therefore reduces the adverse rolling moments caused by the defamation.
When strip theory is used, the ekastic twist is again lower than that
obtained by lifting-surface theory because, again, only the twisting
moments caused by the aileron deflection are present. Here, however,
the absence of the finite-sph.neffects actually results in a greater
adverse rolling moment, even though the twist causing the adverse rolling
moment is in itself’smaller.

Further mention should be made of the behatior at large Mach numbers.
ActualJy all three methods should yield the same results as M approaches
infini~ because, as M increases indefinitely, Mfting-surface theory
approaches strip theory. As an illustration of this fact, the rate of

( 1)3m5roll for a rigid wing ~V is shuwn as a function of
R

The values of
( 1)
pb ~
~R

obtained by using lifting-surface

M in figure 5.

theory rapidly

.
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approach the values obtained by using strip theory as the Mach nuniber
increases. Thus, at high values of M the use of strip theory should
yield aeroelastic solutions of an accuracy comparable to that obtained
by using ~fting-surface theory.

In actual application it may be convenient to have rolling effec-
tiveness given as a plot of pressure ratio against Mch number for con-
stant values of rolling effectiveness. A graph of this type may be made
by cross-plotting the information contained in figure 3 and is included
in figure 6. AI-SOincluded in figure 6 is ~ additional ordinate that
gives the altitude as obtained from the standsrd-atmosphere table in
reference 5.

‘Therolling effectiveness @ at any time during a particular f13@t
may be determined as a function of l&ch number if a history of the flight
is lmown in the form of a plot of standard altitude against Wch number.
For example, consider two constxcnt-altitudeflights, one at 30,000 feet
and the other at 20,000 feet. The resulting variation of the rolling
effectiveness of the example configuration with Mch number is shown in
figure 7.

The indicial-solution (aerodynamic-influence-function)approach used
herein in the calculation of the aerodynamic loads exhibits considerable
promise of being applicable to PM forms other than rectangular. ‘The
delta wing and the low-aspect-ratio swept wing at supersonic speeds can
be handled in the same way as the rectangikr wihg; care should be taken
in these cases, however, to accent for chordtise ben~~ where necessary=
Other static aeroelastic problems such as center-of-pressure shift (which
has been considered by l?rickand Chubb in ref. 1 for high-aspect-ratio
swept wings) and load distribution seem to be smenable to analysis by the
methods contained herein. It might evenbe possible to extend the
approach to take into account unsteady aerodynamic effects and thereby
to obtain accurate solutions to flutter problems. The calculations ti
the last case would undoubtedly be arduous and the main usefulness of
the approach would be to estabtish a basis for the evaluation of more
practical but necessarily less accurate solutions of the flutter problem.

Problems involving configurations about which the flow is not sub-
stantially potential are generally not smenable to this type of approach.
More specifically, the success of the approach depends
bility of linearization to the aerodynamics and on the
late the necessary indicial load distributions.

Amethcd has been
effects on the roll of

CONCLUDING REMARKS

developed for the prediction of
rectangular wings in supersonic

on the applica-
bility to calcu-

the aeroel.astic
flow. The method
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is based on the use of influence functions, either analytically or
experimentally obtained, to calculate the structural distortion due to
airloads. l!heairloads, themselves, are calculated on the basis of line-
arized lifting-surface theory by superposing basic airloads resulting
from elementary angle-of-attack distributions. The solution of the aero-
elastic equations has been obtained by means of a numerical procedure
suitable for use with desk-type calculators.

Results for an example configuration indicate that the variation of
rolling effectiveness with the free-stream static pressure at a constant
Mach number is almost linear; a good approximation may be made by assuming
a linear variation. Thus, in any other cases wherein this linearity can
be expected - that is, when the elastic axis is near the center of pres-
sure due to angle of attack - the calculations may be greatly simplified
in that it is necessary to compute only the free-stream static pressure
at aileron reversal.

The results obtained by using the methd of analysis presented in
this paper are compared with the results obtained by using simplified
methods Of *SiSc Although aerod-c strip theory is valid at high
Mach nunibers,too conservative results are obtained at low supersonic
Mach numbers because of neglect of finite-span effects. Amodified
lifting-surface theory, in which twisting moments due to structural
deformation and roll have been neglected, yields results which are
unconsermtive at low supersonic Mach numbers.

Langley Aeronautical Laboratory,
National Advisory Comniitteefor Aeronautics,

Langley Field, Vs., December 2, 1953.
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APPENDIX A

STRUCTURAL ANALYSIS OF ‘lID1EXAMPLE com~oN

The deformations of the wing of the example configuration are ana-
lyzed hereinby using the approximate plate theory presented in refer-
ences k and 7. This method expresses the deflection w of a plate at
any point (xjy) in the form w(x,y) = W(y) - x e(y) where W(y) is the
deflection of the Wing at the midchord and 13(y) is the twist of the
wing. (See fig. 1.) An ener~ solution of the problem is used wherein
the expression for the potential energy of the plate is written in terms
of the approximate deflection function. Minimization of this potential-
ener~ expression yields two ordinary differential equations in W(y)
and e(y). Since the deflection W(y) has no effect on the airload, it
is eliminated from the two equations; the process yields a single equa-
tion in e(y). This equation has been derived in reference 7 (eq. (A22)
of that paper) and for a rectangular cantilever plate of constant thick-
ness t becomes, in the notation of the present paper,

l)c3d3@
J

-1
—— - 2(1 -p)Dc~= -
l-2 *3 @y

with the boundary conditions

de(0) d2e(z)
e(o)=—=—=

w *2
o

(Al)

ti equation (Al), D is the plate stiffness:

where E is Young’s modulus and p is Poisson’s ratio. As couldbe
expected for this structure, the twists are seen to be dependent solely
on the twisting moment about the midchord M(y).

The solution to equation (Al) for a general M(y) can be obtained
by superposing indicial solutions found by considering the moment to be

_ — -——- —
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concentrated at any spanwise station q. mm, let

M(y) = b(y - q)

where 5(Y - q) is the Dirac delta function.

Equation (Al) now becomes

NACA ‘IN3067

Dc3a3G&)d
2(1 - p)Dc *=4(7-Y) “

F ay3 - -

where 1(v - y) is the unit step function:

The rate-of-twist influence

in order to obtain the rate

a~(y,~) 12Z2 1

T

(A2)

1(7 - Y) = 1 (Y s q)

10- I-Y)=O (y > ~)

a~(y,n)
function ay is the quantity required

of’twist by superposition. ‘Thisquantity is

Cosh‘k -$)-~+Cosh ~ ~)( z J(y > lJ

cosh A

(A3)

where



NACA l!N3067

With regard to this solution, it should

12Z2/Dc3A2 can be written in the form

modulus of elasticity of the material.

Superposition of the rate-of-twist

be noted that

/

~ G#c—, where
3

39

the quanti&

G is the shear

influence function yields

(A4)

Values of a~py for z/c = 3/2 and v = 1/3 (which yields

A = 6) have been computed for O<Z<l inintervals of 0.2 and~–

0 s ~ ~ 1 in intervals of O.1; the results are included in matrix form
-z-

in table IV.

-. _.. .— —.——— — —. ——— —
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APPENDIX B

DERIVA!l?IONOF AJIIIODYNAMIc coefficient

b this appendix the aerodynamic loads necessary for computing
rolling effectiveness are derived. The loads are found in the form of
section lift and moment coefficients by applying linearized supersonic
lifting-surface theory to the rectangular wing with three different
&le-of-attack distributions: the unit-step angle-of-attack distri-
bution shown in figure 2(c), the angle-of-attack distribution caused by
rolding, and the angle-of-attack distribution resulting from aileron
deflection.

Analyses of each of these problems are contained in the literature.
The unit-step problem is essentially the same as the problem of finding
the loads due to deflection of an outboard aileron, which has already
been solved (see, for example, ref. 8); the rolling problem has been
treatedby many i&estigators (see, for example, ref. 9). There does
not seem to be any report, however, that gives the desired coefficients
in a form stificiently complete for the purposes of this paper. For
this reason and also for convenience, the necessary aerodynamic quan-
tities are derived completely herein.

When Mnearized lifting-surface theory is used, the lift per unit
area of a thin wing is given by

where x
tial q,

4q acp(x,y)
p(x,y) = ~

ax

is positive in the direction of the atistream. !Ihepoten-
evaluated at the surface of the wing, is

(Bl)

(B2)

where o(~,~) is the local singleof attack of the wing. In general, for
a rectangdarwimg, the region of integration S includes the entire area
on the wing within the forward Mach cone from the point (x,y). However,
in order to obtain the potential at a point near a wing tip, the proper
region of integration S is determinedly using Evvard’s method (ref.10). -
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The spsmwise loading and twisting moment about the midchord are
given by

41

(33)

If the expression for p(x,y) is substituted into equations (B3), and
the results are integated, the lift and moment become:

1

(B4)

where the fact that the potential is zero at the leading edge has been
taken into account.

The foregoing equations can be nondimensionalized by letting

,

Y1 =1-;

—————— .-. —— — .—— —–—. .



42 NACA TN 3067

.

The resulting equations are

where

(B6)

and m is the modified aspect-ratio parameter Bz/c.

Derivation of pclQ’ and !3c%1

The equations for the spanwise loading @Ze’ and the twisting

moment about the midchord ~c%’ due to the unit-step angle-of-attack

distribution shown in figure 2(c) become, from equations (B5),

1

where the potential O is found for an angle-of-attack distribution
defined by the unit step function:

cf(YIYTll) =I(nl - d
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Equation (B6)

The region of integration Z includes 04v that mortion of S which
lies within the region of the wing between the wing tip and the position
of the unit step in angle of attack at qP

The plan form and angle-of-attack distribution considered are those
shown in figure 2(c). I?Yomthis figure it can be seen that the position
of the unit step is restricted to the rmge oso~<l. Ifj in addi-

tion, the modified aspect-ratio parameter m is restricted to values

greater than A, the potentials # for the finite wing in fig-

ure 2(c) are exactly the same as the potentials on the finite wing por-
tion of the following semi-infinite plan form which has been obtained by
allowing the left tip and the trailing edge of the finite wing to
approach infinity:

?,

Y,3c, 0 \/ \
0 \ 1,0’”

0

m
00 ma);><, II

// / \
/

,O”&k)) ,,/’ ~(a) ,;”’
0 /

/’ ,/’ 0
/ /

//

/

0’ ,0 >“~[b) /, M“ ~(a) “
/

,0’
/0 /0 ,<~;b) v

/
x,, 6,/

!l!hus,attention is confined to the derivation of the potentials on this
Semi-minite plan form. With the potentials known, the loading coeffi-
cients on the finite wing are given by equations (B7).

The Mach lines shown in the above sketch bound a number of distinct
regions. These regions are significant because the area of integration
in equation (B8) takes a different geometric form in each; it is to be
expected, therefore, that the potential @ is given by a different
equation in each region. The proper area of integration x (shown

—.——— ______ —— —— -— —.
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shaded) and the potential @ for the various regions, as found from
equation (B8), are:

b region I:

Y,,L, / ‘\0
/

0
\ /

/
\

//

\

.0,
0

0
/ , 4 ,Yl),;>

0
/

/

/
/

/
0

0 0
/

/ /
/

0 /
/

/ /
/ / 0

/ / ●

/
0

,0 /
0

/0 /’
0

0 0
/ 0

/ 0
/

7
x,, (,

Ih region II:

Y,,!, + //’0,
0

/
/

/

.

.

-.
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In region III(A):

%I(A) = ;

0
//

/
/

0.

x, ,f,

I

xl tam I.1 xl + qvl - YJ

xl (- qvl -’Y1) +m’11-

fi region III(B):

Y,>{, - /’

x, , t,

.—— —... —.—— — .
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Notice that the only difference in the equations for
%11(A) ‘d

O1ll(B) is that the radical in the inverse-~erbolic-tsmgent term in

the equation for @III(A) is the reciprocal of the radical in the

corresponding term in the equation for ‘III(B)“ ‘llhus,the following

form holds for both regions:

r , 1

where

kl .

A similar situation occurs in the derivation of @~(A) and @~(B)

and of K(A) ‘d %(B)” Therefore, the equations for an and ~

may be derived for either the subregion (A) or (B) and applied through-
out the entire region.

h region IV:

x, ,<,
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In region W

[ 1%=:mlf= +“(m - w-%

where

Ih region VI:

0

●
/

/

‘< 0
\ /

,’>:
0 \\

/ .

.

47

——. ——— .—— —.—. —— -—— ——-.———....——



“ 48 I’?ACATN3067

Since the spanwise loading ~cze’ is determined by the value of O

at the trailing edge (see eq. (B7)), the equation for pc~e’ is

dependent only on the region
if for a given value of yl

value of pczo’ is

?

that the tiailing edge is in. For example,
the trailing edge is in region III, the

Thus, the equations for ~cle’ are:

()$cze’ ~= 4

1- 11

1-

A

,1km+‘(h-Y,)-%

L (B9)

and the particular form to use for Pcl@’ is determined by tbe re~on

in which the trailing edge falls.

.

.
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‘I!hedetermination of Pc%’ requires evaluation of the integral

of the potential along the chord of the wing. However, the indefinite
integrals of the expressions for the potentials valid within each region
happen to be continuous across the boundaries of each region. Further-
more, the indefinite integral of the potential that is valid in the
neighborhood of the leadhg edge is zero at the leading edge. !l!hus,the
integral of the potential.along the chord may be found by evaluating at
the trailing edge the indefinite integral of the potential that is valid
within the region in which the trailing edge is located. When the
trailing edge falls successively in each of the regions I to VI. the
resulting equations for ~~’ are, therefore, - “

(’%’), = 0

(’%’)= = :(’ - “yl)3’2~1

[

—

(’%’)m = : ‘(’l - ‘1) --%1 - T
—

{[ 1
P“e’)m = : ‘(’l - ‘1) --lkl - “ - ‘2(} - ‘1)2 ‘

}

;(1 - mYJ/2~1

(’%’), =$ - %)EJZ + w, - Y,)tsdl-q

(’%’)m = 0

* (B1O)

. . . .- —-.—.-—-—— .. —.— —— -.. .-. —
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As before, the particular form to

region in which the bailing edge

Equations (B9) and (B1O) may
loading and twisting moment about

use for pc% ‘ is determined by the

falJs.

now be used to obtain the spanwise
the midchord due to a unit-step angle-

of-a-ttackdistribution for particular values of VI and m. h- sti-
rizing the information, it is convenient to

various ranges.
titular forms to

For m~2 and

Sketches of
use in each

Osqls+

the Mch lines
range follow:

separaie m and TIl tito

and SLUIIIEr ies of the par-

(1+0) l+2a 1 % o

I ~ \ /

/1
\/

/I!// /1
‘m ,/In,/ Is Z/’

/
/ ,1 /&

.

.

.—
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I
iii

[

for region II when Osylsnl-:

for region IV when ~l-*-yls*

the coefficients

for region III when ~S yl~ ~+ 71

for region VI when ;+nls yl~ 2(1+ a)

—.. .—...— —-
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rfor region 11 when Osyls:

{

for region I when ~~ Ylsvl-*

Use the coefficients

for region III when ql - ~Uyl Sql+*

lsyl S2(l+a)
1
for region VI when ql+~-

I

XI

/ ‘\ /
/

‘\\,//’/ / \\
I / /,

/’ m ‘m,://’ // ,/‘~/’

for region V when <1Osyl=fi-vl

)for region IVwhen ~ - ql Syl Sk

Use the coefficients

—. ——. —— --— .— -—



NACA’l?M3067 53

““r
I

L
I ,

I T/\ /I ‘\/“ \
1/ \

/
/

/

[

\

m ‘In v’/ /\\n
/

// /’~ ‘\.,

ii-

[

for region II when Osyl

Jfor region IV when l&*

Use the coefficients

[

for region III when ~S yl

for region VI when ql+~

Derivation of PC2P smd P%

The local angle of attack due to a unit rate of
is given by

roll (pb/2V= 1)

(Bll)

The potential is therefore givenby

\

———— ——-



In this section, the potential @ is derived for a finite rectan-
x~tith a nondimensional span of 2(1+ a). b order to simplify
the derivation, it is assumed that no point on the wing is influencedby

both wing tips; this assumption is valid provided that ma~.
l+a

The Mach Enes originating at the intersections of the leading edge
and the tips divide the wing into two distinct regions (see the following
sketches) and the potential O for these two regions is given by equa-
tion (B12) as folluws:

b region I:

\
\

\
\

\
\ I\ \ \ /

\ \ I/’~
\ /

I

(1 -Y~ a

01 .-z +—
I(ll+a l+a )

In region II:

YI, c,
\

\
\

\
\

\
\ I

\
\

\
\

\ // (X,,y,)

I

.

—. —.— .—— —.—. — —.
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The equations

about the midchord

for the spanwise

~~p are found

determine the equations-for PCZ~1

The equations

viously, are

)+~
l+a

(1 Y1-—.
3

10* Bczp and the twisting moment

in a manner simi& to that used to

and ~
%’” ‘w’

:)@G, +
1

for ~ ,
%

obtained in a manner simik to that used pre-

[

8al
m 1–— -My~1-IUyl)m

fil+a3

...—. — ..——— — .. .. . ._ . — .——.. . ..—
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Ih order to cotiorm to the assumption made in the aerodynamic
analysis, the airloads over the rigid plate in the center section of
the wingare

aspect-ratio

Summaries of
f Ollow:

For m> 1:

Y,~

to be neglected. Therefore, the limit of the modified

parameter can he lowered from ma & to m>-.
l+2a

the particular forms to use and illustrative sketches

/’//
I /’ n

/

/’
/

i

i

for region II when Osyls:
Use the coefficients

for region I when ~S yl S 1

For 1 ~m~l:
l+2a

—-—

Use the coefficients for region IIwhen OS yl~ 1

— ——.. . .. —

.

,.

.
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It should be noted that each expression for pczp ; P% c=

be separated into two parts - one with the coefficient —
l+a

and the

other with the coefficient 1 -
l+a

each of which is independent of a.

The first part is the result thatwouldbe obtained on the right~g if
the wing were rolling about the x-axis (see fig. 2(a)); it is therefore
designated $CZ

Po
or ~~oo The second part can be shown to be the

section lift or moment coefficient which results from a uniform angle
of attack; it is therefore designated ~cza or ~~. Thus, the quan-

tities f3cZp and ~~ can be written as

PC2P =+ %po
a-—

l+a Bcza

P% = & $%’0 -*%

where the coefficients in the various regions me:

()*2P0 ~
= -4(1 - y~)

()
pc~a ~ = 4

(%)
$ = o

01

(%)
P = o

I

()
[

Y1
%pon’-: 1-~-

(%)P (81 Yl+l=-—- —
o113fi 5 )r(~ ~1 1 - Myl)3/2

(~c%)rI=*E(l - In#

.- — —
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Derivation of 13czb and 13c%

In this section, the aerodynamic loads due to aileron deflection
are derived for a trailing-edge aileron of constant chord ca and
SpaIl ba. The spanwise location of the ~oard end of the aileron is

left general; the outboard end of the aileron coincides with the wing
tip. It is assumed that there are no gaps between the aileron and the
wing. Furthermore, the portion of the wing forward of the hinge line
may be assumed to be absent because the wing is considered to be at zero
angle of attack, the aileron hinge line is unswept, and only supersonic
speeds are considered. The resulting configuration is exactly the same
as that encountered in the derivation of pcze md PC%. h addition,

since, for most reasonable aileron cmi~ationsy tie Press~es ~ the
right wing sre unaffected by the deflection of the left ailerony the
total spanwise loading $czE and the total twisting moinentabout the

midchord ~~ can be found by properly substituting the aileron dimen-

sions for the wing dimensions in the results already obtained for $cze’

and PC%’. b order that the foregoing be true, the restriction -

Ca
m> 1 is necessary.

l+2a-bal

i% Ca is mibstituted for c and bal = ha/Z for ?1 ~ the

expressions for the loads due to structural deformation, the load due
to a unit aileron deflection will result. Several more steps are neces-
sary, however, in order to produce the desired results BCZ5 and PC%.

b the first place, the reduced aspect-ratio parameter which was p2/c
becomes @Z/ca = m/cal~ ‘here Cal= ca/c” In addition to the substi-

tutions mentioned in the preceding paragraph, therefore, the substitu-
tion of m/Cal for m must be made, both in the expressions for BCZQ’

and p~~’ and in the expressions which define the limits of applica-

bili~ of these terms. Furthermore, in the nondimensionalization of the
moment expression the quantiw c is involved. In order to preserve the

nondimensionalizing coefficient qc/~ for the aileron 1* and qc2/$
.

for the aileron moments, the expressions for pcte’
P1’b%) d

~~ ‘~lJbaJ
must be multiplied by %1 W ca12} respectively.

Lastly, since the moments are taken about the midchord in the case of
pressures due to the structural deformation, direct substitution yields
the moment about the aileron midchord; thus, the moment must be trans-
ferred back to the wing midchord.

.—-—— ———————–—
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The proper forms to use in

59

summarized
Peal ~d

as follows for values of m greater than both —
bal

Cal

1 + 2a–- b
al’

,

Xa

L co,
b a,-=

[

Ca

for region II when osyl~+

I
Cal < Ca

for region I when —=
m

yl~bal-~

Use the coefficients
Cal - Ca

for region III when ~ylsbal+~bal - —
m

1 Cal
for region VZ when bal+y~yl~l

———.— ——-————
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I
co,

co

b .—01 m +

r Cal

for region II when Osylsy

The expressions for the

I
Cal <

Cal
Use the coefficients for region I when ~ . yl~ bal - ~

for region III when Cal <
bal m

coefficients in the various ranges

1-

ylsl

are:

()
8

lJ
tin-l cal + ‘(b% -‘J, m(’a yl)w-~l,

1-PC28~1 ‘ ; Cq
c% - (mbal - Yl)

— -——— -——



NACA TN 3067 61

(%) (P ~=-2call-cal)

--L

4(1 - Cal)cal tan-l ‘1
Cal - W1

(1-
Ca
1 (+m bal - Yl)

(
+

Ca -
1

m bal - Y1 )

1-

(m ba
1 )[ )

- Y1 1 - 2Ca1 ~-lkl’ +
/~aJ2 - ‘2(bal - y~ 2)J

(%)$
= o

VI

where

J

Cal - (m bal - Yl)
kl~ = “

Cal
(

+mba
1

- Y~
)

JCal (+m bal - YI)
kl~ =

c%-‘(%L-‘4

---- ..-. ———. .— —. —.————
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TABIEI.-PAEIXhI.2ECTIOIfI=T AED 1~ CoKFFIoImm &ze’ ~ @q’

FOR AONIT-STEPARJIXOFATMCK -CarMmmd
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.9 1.544320L4&r78 1.37@ol 1.2813501..175722LQ55W5 .!328935.77a27 .%4570 .a4@18 Q
Lo o 0 0 0 0 0 0 0 0 0 0

~’wz>nh)

T
-0.9-o.cm o

-.04 38 !.o1781M:
u o 0 0 0

8
0 0

-. 0 0 0 0 0 0 0 0
-.~ -.0W58 -.&7438 -.ol* o

-.mdl -.@Ym3 -.cA7438:.Ol?wl :
0 0 0 0 0

-. 0 0 0 0 0
-.5 -.143zJ6-.llwl -.o&@8 -.&7438 -.o17g08: 0 0 0 0 0

-.4 -.165594-.M3z56 -.mca -.G3s358-.047438-.017s09o 0 0 0
-.3 -.l-@34 -.1633g4-.143536-.l14C61-.O&658 -.&7438 -.017W :

-.uk%l -.0W358 -.M438 -.017908 :
0 0

-. 2 -.ls~l -.1736e4 -.1653g4 -.I.43536
-.= -.mw -.lr%a -.*594 -.~3536 -.~4Q61 --- -.~T438 -.QMW8 :

0
-.1
0 0 -.1.27212-.1.67131-.173684-.165%4 -.M3536 -.uk052 -.oE0358-.d+T438-.Qq!m :

.1 -.152677 .c@@l -.1o1748-.141665-.150219-.14aE?3-.llwl -.0m596 -.V5393 -.CQEJ77 o

.2 .235037 .lg5119 .0s7905-.05gy% -.O?E.24-.D7T78 -.cmea -.075629-.0461% -.017=3 Q

.3 =%379 .@5@5 .fi39Q7 .- -.0Mm8 -.05c436-.@@@ -.@@%v -.030353-.-7 Q

.4 .331928 .5k2019 .333467 .=93547 .~s .039= -.m -.cw5k5 -.0U913 -.cqs% o

.s .355743 .37-RO1 .387891 .379338 .339419 .=07 .~914 .Q33* .QWQ5 .~lf= o

.6 .363565 .393039 .4vQ98 .425187 .4K.53S .3736W .%37672 .0X558 .039652 .0W75 Q

.7 .353146 .385348 .41.5823.437891 .444699 .42%lol .373510 .229183 .0%-769 .023446 Q

.8 .4mr75 .423574 .418971 .3%%J .333068 .186742 .043835 0

.9 :2?% :X% :305315 .326265 .338357 .33%JE?i.32=5 .= .244267 .LI0547
Lo o 0 0 0 0 0 0 0 0 0 0

.

— —.— —-— —-————
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TABIE I.-PARTIALSHX’IORIJm Arm krlMmTcoEFFIclm!rspeze’ m f%Q’

FOR AIJRTC-STEPAiltZEOFKZTACK-Continued

(c) fn/c- 4/3

For rI/tequal to -

/rl

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo

mze’(Y/hn/z)

.&i 0.0210160 0 0 0 0 0 0

:j E%!J :%gj ~:%g i-w ; : : : : : :

-.3 .67&q6 :411c646.55952 .n3298 .-1-6 0 0 0 0 0 0

.97@@5 .f57~76 .- .253s-52.~3@3 .CPIOI-6o 0 0 0
::; 1.370753 .g7&g .678076 .44C646 .253552 .u3298 .~~ :

2.mXMXl 1..37O753.978405 .67&76 .440M .253552 .113298 .- :
0 0

0 0
.1 2.6292462.ocnXm L370753 .97e405 .67f?07f5.- .253s52 .~3298 .-~ :
.2 3.cQlEu52.6292462.omocQ 1.370753 .976395 .678076 .- .anm .KL3E98 .~~ :

.3 3.awt5 2.s917772.599419L 97017kL34W5 .948567 .=49 .41@8 .=4=4 .0J33470Q

.4 3.3972783.139%8 2.85!%302.46nT2 L 837926I-.20%78 .8163m .51- .mm .W5’m o

.5 3.379m 3.1924702.9550402.6547f=2.262363L633~8 1.W870 .6w= .3MX .w@J o

.6 3.242txJ83.1o14012.91k7072.6772762.3769% 1.9eM03 L355355 .72!3@3 .36u5YL .=5542 o

.7 2.g7cmL82.8-77t!M2.7371872.5504922.313@2 2.01.27371.623319~ 018592 .Um .14cm6

.8 2.5~15 2.5079152.3M21 2.2539632.067269L833VJ1 L55@-%6 l-.=0853 .6m .-17 0

.9 1.8174g31.817493L 817493L7CW2 1.567623L412759 L238580 L @3232 0.TEM3 .339531 0
Lo o 0 0 0 0 0 0 0 0 0

B@ ’(Y/2,Tm

-o.~ -o.Cwg46 o 0 0 0 0 0 0 0 0
-. -.ck7439-.K9946 :

--- -.047439--- :
0 0 0 0 0 0 0

-.5 0 0 0 0 0 0
-..4 -.134344-.0W26 -.047439-.W946 :

-.*594 -.134344-.* -.047439-.mz+46 :
0 0 0 0 0

-.3 0 0 0 0 0

-.2 -.173340;:y~ -.&44 -.w2226 -.047439-.cFw46 o
-.134344-.0W26 -.&7439 -.CKW46 :

0 0 0
-.1 -.W3363

75%-.IJE563:1 -.m -.vkJJ1 -.C%W6 -.047439--- :
0 0

.0 0 0

.1 .ti5363o -.M5363 -.lmwl -.16m4 -.134344-.cE12126-.047439-.Cw9M :

.2 .17534.0.M563 o -.145363-.175340-.165594-.134344-.092126-.W439 -.0CE39M :

.3 .1P .l@456 .159479 .141157-.131247-.lQ=4 -.15ti78-.= -.m~ -.033323 0

.4 .202250 .233500 .243246 .=3269 .CM57’%%-.077456-.107343-.097687-.065437-.@5@ o

.5 .223508 .267-723.Z98374 .308722 .278743 .1333eJ3.m9* -. W1960-.033’D3-. a- o

.6 .24~ .289745 .331!%2 .363213 .372559 .342982 .197619 .030866 .mm -.@m90 o

.7 .259451 .296943 .341631 .38X%8 .415038 .42484A .393465 .2376TL .073396 .018193 0

.8 .275268 .275268 .322707 .367394 .40$F5SL.439329 .437s49 .388547 .21@3 .047776 0

.9 .exm .aXw3 .Zwm .2975= .340250 .36@51 .37W7 .3607’94.3cW8 .139935 0
LO o 0 0 0 0 0 0 0 0 0 0

-.—. — .—.———
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TAME I.- PARTIALSEC!CCOMLIFT AND lDMER’PCOEFFICIENTS I?cze’AND ~’

PORAURT1’-2TEPAlVQIiEOFA!tTACK-Continued

(d) ~2/C = 2

For TI/Z equal ta -

{/1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo

Bcze’(Y/2,n/z)

-0.4 o.n3B8 o 0
-.3 .341391 .l132g8:

.678076 .341391 .n3298 :
::: L159E60 .678076 .341391 .rL32g
o 2.WXW l.l~gwl .67&76 .341391

.1 2.e401392.cKlocw1.159%0 .67M76

.2 3.321g232.E401392.cKKXm 1.15985C

.3 3.6586083.32W23 2.8401392.cmcq

.k 3.E!as7013.65EW183.321g232.&O13s

.5 k.mxxm 3.JW57013.65%08 3.3q%Tg

.6 3.387g213.&J7g213.7246233.4W33C

.7 3.5oiw9 3.5W% 3.5@99 3.39059

.8 2. ggm’o 2. ggm.o 2.s91140 2.$)@+c

.9 2.195262 2. 1W62 2. 1%K!62 2. UW?62
Lo G 0. 0 0

I I I I
-0.4 -0.0474380 0
-. 3 -.@K!62 -.047438:
-.2 -.M&&? -.rL4C& -. cW38 :
-. 1 -.167131-. I.65552-.ubC& -. CW43E
o 0 -.167131-. *S% -. I14C%Z

.1 .1671310 -.167131-.1.65592

.2 .I.65555 .1671310 -.167’131

.3 .mC%2 . 1655g2 .1671310

.4 .047438 .U.4C62 .165595 .167131

.5 0 .047438 . lmM2 . lm%

.6 .067’307 .@go7 .115345 .l&l!XS$

.7 .166336 .S336 .h56336 .213774

.8 .2455C4 .24Bc4 . 249x4 . 24w4

.9 .m@ .U .m- .-
Lo o 0 0 0

I I I I

o
0
0
0
. l13!@

.341391

.67&xf
1.1598&
2.moCa
2. w135

3.lyX!44
3.W
z. m7
2.159262
0

0
0
0
0
0

.rL32g8

.341391

.678076
1.15$X35C
2.CKnXMX

2.67&361
2.825813
2.649749
2.@59~
o

0
0
0
0
0

0
. l13@
.341391
.67Ew6

1.15985C

1.&j-&l
2.344029
2.313@9
1.857870
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0
.113298:
.341391 .113238:
.67&v6 .341391 . l132g

-u.ggn82 .515998 .1793X
1.5038a3 .663755 .!Zu4q
1.8312701.owx .27137
1.552&18 l.l@Z~ .-
0 0 0

~’(Y/2,n/z)

o Q o 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0
-.&7438 :

0
0 0 0

-. U.406i
-.*56
-.167131
0
.16zt31

-. c47438o
-.l14C62 -. d1743e
-.165592 -. UJOS2
-.167131 -.1.65595
0 -.167131

0 0
0
-. 0i7438:
-.rL4062-.ck743[
-.l.655g2-.m.Qsl

.233502 .235035 .&m --- -.09768!

.280398 .331928 .333467 .166336-.wcqy
,*2 .363566 .415@3 .4M-6z .2376x
.m o.319@ 0.3W5 0.4235740.3924S5

o
I 1 1 I

o
0
0
0
0

0
0
0
0
-. 04743[

-. 046u4
-. OIJ.9E
.039653
.1%741

o

—

o
0
0
0
0

0
0
0
0
0

0
0
0
0
0

—

—

o
0
0
0
0

0
0
0
0
0

0
0
0
0
0
—
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TABIEI.-PARTIAL SHXCIW~ ANO MMERTCOEFFICtmlS @ze’ AND ~’

FOR AUTTIT-STEPARXEO FATTACK -Concluded

(e) pZ/c = 4

.For ~1 equal to -

Y/l

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo

&ze’(Y/2,11/z)

-0.2 0.rL32g8o
.678075 .n32g8 ;

o 0 0 0
1

0 0 0 0
-.

2.Ooomo .67&v5 .113298:
0 0 0

0
0 0 0 0

.1 3.321g232.cn?20m .67&75 .u3298 :
0 0 0 0 0 0

.2 3.t-!fK7113.32J$232.ommo .67&75 .rL338 :
0 0 0 0 0
0 0 0 0 0

.3 4.fYXOOo3.8%701 3.321g232.cnOocQ .678076 .u3298 o

.4 4.ocmoO 4.ch3mXl3.&367n 3.321g232.ocQoOo .678075 .l13zg8:
0 0 0

0 0
.5 4.cOoOoo4.030ciXl4.cKwOo 3.8%701 3.3215232.Oocmo .678076 .113298:
.6 4.CJxxxa4.oCK!exl4.CHmm34.m3@M 3.8%7113.32Y3L532.~ .67&Y75.l13@3:.

0

.7 4.OCKKWI4.Omx?o4.cYxloOok.ocoxm 4.@MlxKl3.8%701 3.321g232.~ .678076 .~32g8 :

.8 3.637’9203.6379203.fmmo 3.8379203.6379203.837!3W3.7246333.15X44 1.837926 .515998 0

.9 2.9gl1452.9911452.Bn45 2.5gll$52.ggl1452.ggl1452.ggl1452.%778372.313~ 10m~p o
Lo o 0 0 0 0 0 0 0 0 0 0

B%% ’(Y/z,lm

-0.2-o.ck7k38o
-.1655g4-.@7k38 :

0 0 0 0
1

0 0 0 0
-.

.Bw ; &J594 -.cW38 :
0 0 0 0 0 0 0

0 0
.165y34-.047438:

0 0 0
.1

0 0 0

-.165594-.047438:
0 0

.2
0 0

.047438 .1655g4o
0

0 0 0 0 0

.3 0 .&7k38 .1655g4o -.*594 aw~$ o

.4 0 0
0

-.&7k38 :
0 0

.&7k38 ;$55? o
-.1655g4-.C47438:

0 0
.5 0 0 0 .1.655940
.6 0 0 0 0

0
.&7438 .1655940 -.1655g4 -.Ck7438;

.7 0 0 0 0 0 .dt7438 .1655940 -.1655g4-.047438 ;

.8 .679044 .C&(gti .C@@ .C@gc4 .C@X% .C@@ .u5356 .233502 .ti~ -.@7688 o

.9 .24Bc4 .eg5& .24~& .24B04 .24~c4 .24$@ .24w14 .2g@40 .414640 .237672 0
1.0 0 0 0 0 0 0 0 0 0 0 0

—.
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TABLEII.- SMXIIcO?JLIFT’AND MOMENTCOEFFKXEWE3 @zp~ ~

FOR AUNITRNCE OF ROIL

y/z !3CZ=(YIZ) ~czpo(Y/z) B~(Y/z) P~o(Y/z)

(a) fJZ/c = 5/7

o 3:714314 0.306768 0.lc@o -o.IL8325
.1 3.5&3100 .047812 .ti5258 -.159784
.2 3.442694 -. 1EW167 .180326 -.20162g

3. 2~239 -.3m93 .21220’7 -.241915
:; 3.077662 -.558969 . 2Mo1o -. 27E!M2
.5 2. 85L240 -. 6935= .261463
.6

-.3@2’7
2.5WA8 -.784948 .2739CQ -.32WKI

.7 2. 270W1 -. &3060 .273661 -.333866

.8 1.878085 -. 7@@4 . @E@ -.315697

.9 1.34476!3 -. &1916 .202991 -.255769
1.0 0 0 0 0

(b) $Z/C = ~

o 4.ooOOOo 0 0 0
.1 3.M13 -.93532 .O@@ -.025974
.2 ;.833?!Z~ -.631772 .(%7905 -.070621
.3 -.873882 .l166g4 -.u3696
.4 3:503W -1.O!Xf!.% .166334 -.179641
.5 3.~240
.6

-1.212206 .- -. ~3427
2.ggu35 -1.295676 .249503 -.2@k5
2.fmg85 -1.305516 .272A3’7

:;
-.31C407

2.195256 -1.zL6158 .271624 -.315084
.9 1.5@2* -.g66y30 .229183

1.0 0 0
-.27@36

o 0

(c) pz/c = 4/3

o 4.omooO o 0 0
.1 4.00cnoo -.400mo o 0
.2 4.Oc#ooo -.@loCc) o 0
.3 3.97017’1 -1.16g87’7 .014U5
.4

-.014256
3.@7919 -1.433309 .@g(% ‘ -.@943

.5 3.633u6 -1.616485 .133380

.6
-.14cXY!9

3.355351 -1.716783 .197619 -.2UA52
.7 2.ggD42 -1.71g543 .249502 -.271957
.8 2.507913 -1.5@2g .275267 -.305547
.9 1.817491 -1.26@s .250073 -.282582
1.0 0 0 0 0



NACA ‘IN3067 69

r

.

.

Y/z Pcza(Y/o f%pa(Y/z) P~(Y/z) P~o(Y/z)

(d) ~Z/C = 2

0 4. CKnooo o 0 0
.1 4.000000 -.4000m o 0
.2 4.Ooom -.800000 0 0
.3 4.oOoooo -L 200000 0 0
.4 4.000000 -1.600000 0 0
.5 4.0000QO -2.000000 0 0
.6 3.8-379= -2.23MN6 .067906 -. o@264
.7 3.503723 -2.286270 .166336 -.172989
.8 2.99LL3,7 -2.143407 .249504 -.264474
.9 2.19274 -1.707722 .271624 -. 2933X

1.0 0 0 0 0

(e) pZ/c = 4

0 4.000000 0 0 0
.1 4.moooo -.400000 0 0
.2 4.mo -.800000 0 0
.3 4.0000oo -1.200000 0 0
.4 4.000000 -1.600000 0 0
.5 4.om -2.000000 0 0
.6 4.0000CKI -2.400000 0 0
●7 4.000000 -2.800000 0 0
.8 3.8’37920 -3.036384 .0679(% -.068585
.9 2.991135 -2.567274 .249503 -.256987

1.0 0 0 0 0

.—— ..-— -— ——- ——— ..-. — .——
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TABLE m. - SECTIONAL LIFT AND MOMENT COEFFICIENTS ~Clb AND j3~

FOR A UNIT AILERON DEFLECTION

[1

a Z 0.14

b~z = 1.0

c~c = 0.2
L

y/2 P@Y/2) P% (Y/z)

o
.1
.2

.3

.4

:2
.7
.8
.9

1.Q

o
.1

:;
.4

.5

.6

.7

.8

.9
1.0

(a) Pi/c = 5/7

-0.400000
-. &6627
-.760302
-0800000
-. @OoOo
-.800000
-. eOoooo
-.800000
-.742863
-.570248
0

-o.1600m
-.2’jlT@
-.301OE!.CI
-.320000
-.320000
-.32cMIo0
-.320cw
.-.3200m
-.292771
-.217640
0

(b) ~Z/C = 1

-o.4m
-.701015
-.800000
-.800000
-.800000
-.800000
-.800000
-.800000
-. 8uoooo
-. 65W19
o

-0.160000
-.274665
-.320000
-.320000
-.320000
-.320000
-.320000
-.3200c0
-.32c000
-. 2~370
o

y/1 Pcz5(Y/z) PQY/z)

(c) f3z/c =4/3

o
.1
.2

.3

.4

.5

.6

.7

.8

.9
1.0

-0.400000
-. Tkg212
-.800000
-.800000
-.800000
-.800000
-*800000
-.800000
-. 80CQO0
-.726623
0

-o.1600m
-.295998
-.320000
-.320000
-.320000
-.320000
-.320000
-.320000
-.320000
-.285314
0

(d) ~z/c>2

o
.1
.2

.3

.4

●9
1.0

-0.400000
-.800000
-.800000
-0800000
-.800000
-.800000
-.800000
-.80CC@o
-.800000
-,800000
0

-0.160000
-.320000
-.320000
-.320000
-.320000
-.320000
-.320000
-.320000
-.320000
-.320000
0



[1

b%
Tl!Em Iv.- rmnamm Comrcm lmmlx —

ay

m m s..mwmCmxmlvmom

00 0 0 0 0 0 0 0 0 0

~ 0.055872 o,2hJu88 0.449316 0.561924 0.623772 o.65@6JI 0.676728 0.6874560.693972 0.@x3760

3 0.016W8 0.0735% 0.191304 0.4137= 0.638496 o.761dLo 0.8zsJA0 0.8582480.891903 o.gc@80

O 0.0&JJ_2 0.022320 0.05&168 0.K!5532 0.24@04 0.47’69280.7C57@3 o.&35560 o.914@ o.972396

0 0.0Q1656 o.acnflzo.o@mo o.d+a%6 0.0813s6 O.UUW 0.290376 0.53f54MI0.799236 0.5wM8

O 0.w36 0.cc4032 O.Ol@tO o.0226c@ O.d$@t 0.095824 0.16J33m o.296244 0.543816 0.995040
—
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Figure l.- Configuration considered in the aeroelastic snalysis. Positive
directions of displacements and velocities are indicated by arrows.
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(a) Wing with rigid-plate center section.

~=.,=+.m=.

+~v+x
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(b) Wing with antisynmetricalunit-step’angle-of-attack distribution.

(c) Wing with unit-step amgle-of-attack distribution.

Figure 2.- Configurations considered in the aerodynamic analysis.
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(b) M = 1.202.

Figme 3.- Variation of rolling effectiveness with
constant values of kh number.
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.
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(d) M = 1.667.

Figure 3.- Continued.
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1.0
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Rolling
.6

effectiveness,

4
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I I I
rModified lifting– surface

theory
, 1

- Lifting - surfoce theory
I I

flStrip theory

I

I-’b\h 11

‘ ‘M~2.848
I I J

o .2 .4 .6 .8 1.0

Pressure %rotio , —
R

(e) M = 2.848.

Figure 3.- Concltied.

.

.



NACATN 3067 77

I,0

.8

Pressure “6
ratio at
reversal,

;2

\

1

Modified lifting-surface theory —f
Ill
L“fiing-surface theory

I I

Strip theory /

Figure 4.-

0 I 2 3
Moth number, M

Variation of pressure ratio at reversal with Mach number.

Rigid rate
of roll,

( /)pb8

2V R

1.0

.8

.6

.4

.2

~ Lifting-s wface theory
I I I

Strip theory

\

/

\
-

0 I 2 3
Mach number, M

Figure ~.- Variation with Mach numiberof the rate of ro~ for the rigid
wing.
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